Solutions to tutorial exercises for stochastic processes

T1. \Rightarrow : Suppose \mathbb{X} is $\mathcal{F}-\mathcal{S}^{T}$ measurable. For any $t \in T$ we have by the definition of \mathcal{S}^{T} that $\mathbb{X}^{-1}\left(\Pi_{t}^{-1}(S)\right) \in \mathcal{F}$ for any $S \in \mathcal{S}$, where Π_{t} denotes the projection on the t th coordinate. Finally $\mathbb{X}^{-1}\left(\Pi_{t}^{-1}(S)\right)=\left\{\omega: X_{t}(\omega) \in S\right\}=X_{t}^{-1}(S) \in \mathcal{F}$.
\Leftarrow : Suppose all projections X_{t} are $\mathcal{F}-\mathcal{S}$-measurable. Let $S \in \mathcal{S}$ and $t \in T$. Then $\mathbb{X}^{-1}\left(\Pi_{t}^{-1}(S)\right)=X_{t}^{-1}(S) \in \mathcal{F}$. So \mathbb{X} is measurable on the set $\left\{\Pi_{t}^{-1}(S): t \in T, S \in \mathcal{S}\right\}$. This set generates \mathcal{S}^{T}, so \mathbb{X} is $\mathcal{F}-\mathcal{S}^{T}$ measurable.

T2. Since X_{t} is continuous and since \mathbb{Q} is dense in \mathbb{R} we have that

$$
\sup _{t \in \mathbb{R}} X_{t}=\sup _{t \in \mathbb{Q}} X_{t} .
$$

Let $a \in \mathbb{R}$. Then

$$
\left\{\sup _{t \in \mathbb{R}} X_{t} \leq a\right\}=\left\{\sup _{t \in \mathbb{Q}} X_{t} \leq a\right\}=\bigcap_{t \in \mathbb{Q}}\left\{X_{t} \leq a\right\} \in \mathcal{F}
$$

So $\sup _{t \in \mathbb{R}} X_{t}$ is measurable on the set $\{(-\infty, a]: a \in \mathbb{R}\}$, which generates \mathcal{B}. So $\sup _{t \in \mathbb{R}} X_{t}$ is $\mathcal{F}-\mathcal{B}$-measurable. Furthermore

$$
\left\{\sup _{t \in \mathbb{R}} X_{t}=\infty\right\}=\bigcap_{n=1}^{\infty} \bigcup_{t \in \mathbb{Q}}\left\{X_{t} \geq n\right\} \in \mathcal{F}
$$

and similarly

$$
\left\{\sup _{t \in \mathbb{R}} X_{t}=-\infty\right\}=\bigcap_{n=1}^{\infty} \bigcup_{t \in \mathbb{Q}}\left\{X_{t} \leq n\right\} \in \mathcal{F},
$$

so that the events $\left\{\sup _{t \in \mathbb{R}} X_{t}=\infty\right\}$ and $\left\{\sup _{t \in \mathbb{R}} X_{t}=-\infty\right\}$ are measurable as well.

T3. We first show by induction that for some $s>0, N_{s}$ is Poisson distributed with parameter λs. Firstly $\mathbb{P}\left(N_{s}=0\right)=e^{-\lambda s}$. Now suppose that $\mathbb{P}\left(N_{s}=k\right)=e^{-\lambda s} \frac{(\lambda s)^{k}}{k!}$ for all $s>0$. Then by conditioning on τ_{1} we find

$$
\begin{aligned}
\mathbb{P}\left(N_{s}=k+1\right)=\int_{0}^{s} \lambda e^{-\lambda x} \mathbb{P}\left(N_{s-x}=k\right) \mathrm{d} x & =\int_{0}^{s} \lambda e^{-\lambda x} e^{-\lambda(s-x)} \frac{(\lambda(s-x))^{k}}{k!} \mathrm{d} x \\
& =e^{-\lambda s} \frac{(\lambda s)^{k+1}}{(k+1)!}
\end{aligned}
$$

So N_{s} is indeed Poisson distributed with parameter λs. Let $T_{k}:=\sum_{i=1}^{k} \tau_{i}$ be the sequence of arrivals. We can write

$$
N_{s}=\sum_{k=1}^{\infty} \mathbb{1}_{\left\{T_{k} \leq s\right\}},
$$

and similarly

$$
N_{t}-N_{s}=\sum_{k=N_{s}+1}^{\infty} \mathbb{1}_{\left\{T_{k} \leq t\right\}}=\sum_{k=1}^{\infty} \mathbb{1}_{\left\{T_{N_{s}+k} \leq t\right\}} .
$$

We know that $T_{N_{s}+1}>s$. In fact by the memorylessness of the exponential distribution we have $T_{N_{s}+1} \sim s+\operatorname{EXP}(\lambda)$. Similarly $T_{N_{s}+k} \sim s+T_{k}^{\prime}$, where T_{k}^{\prime} is an i.i.d. copy of T_{k}. Furthermore $T_{N_{s}+k}$ is independent of N_{s}, since N_{s} is independent of $\tau_{N_{s}+1}, \tau_{N_{s}+2}, \ldots$. Finally we have

$$
\begin{aligned}
\mathbb{P}\left(N_{s}=x, N_{t}-N_{s}=y\right) & =\mathbb{P}\left(N_{s}=x\right) \mathbb{P}\left(N_{t}-N_{s}=y \mid N_{s}=x\right) \\
& =\mathbb{P}\left(N_{s}=x\right) \mathbb{P}\left(\sum_{k=1}^{\infty} \mathbb{1}_{\left\{T_{\left.N_{s}+k \leq t\right\}}\right.}=y \mid N_{s}=x\right) \\
& =\mathbb{P}\left(N_{s}=x\right) \mathbb{P}\left(\sum_{k=1}^{\infty} \mathbb{1}_{\left\{s+T_{k}^{\prime} \leq t\right\}}=y\right) \\
& =e^{-\lambda s} \frac{(\lambda s)^{x}}{x!} e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{y}}{y!} .
\end{aligned}
$$

